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Abstract

This work deals with homogenization models for cracks in lattice structures representing cross-sections of catalytic
monolith combustors. A simple asymptotic approach is used to describe interaction of cracks and to evaluate the stress-
intensity factors. An asymptotic model of local stability of a crack interacting with a micro-defect is presented. © 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

A catalytic combustor is represented by a ceramic cellular monolith structure with square, hexagonal or
triangular cells. For a description of combustion reactions in a catalytic monolith, we refer to Hayes and
Kolaczkowski (1997). In the present paper, we are mainly concerned with elastic fields in a damaged lattice
structure. The homogenization models for cellular structures with square cells were studied by Antipov
et al. (2000) with applications to propagation of cracks and crack—defect interaction. A particular feature of
the lattice structure with square cells is a low resistance to shear; the homogenized material is orthotropic.
In the present paper, we consider two remaining possibilities: hexagonal and triangular lattice structures. In
both cases, the homogenization procedure gives isotropic media; however, the hexagonal structure is
characterized by a small shear modulus (Gibson and Ashby, 1998). It is appropriate to refer to the work by
Hori and Nemat-Nasser (1987) and Gong and Horii (1989) who studied numerically a long-range inter-
action between a finite crack and a micro-crack in 2D isotropic media. Fracture analysis of cellular ma-
terials was developed by Chen et al. (1998) in the frame of the strain gradient model. These authors
analysed the asymptotic fields near the crack tip and the full-field solutions for cellular materials with
hexagonal, triangular or square lattice.

We present an asymptotic algorithm that allows us to retrieve the effects similar to the ones discussed by
Chen et al. (1998) and, in addition, we analyse interaction of cracks in a homogenized lattice. The structure
of the integral equations, involved in the algorithm, is also similar to Rubinstein (1986). The results of the
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present paper are mainly analytical; the dipole fields associated with a small micro-crack were evaluated
explicitly, and the asymptotic algorithm described below has the same structure as the one employed in the
earlier work of Antipov et al. (2000). The main results of the present paper include the following:

(1) asymptotic formulae for the stress-intensity factors associated with crack—defect interaction in
hexagonal and triangular lattice structure;

(2) comparison of asymptotic estimates for the stress-intensity factors for different lattice geometries;

(3) local stability analysis in crack—defect interaction.

The structure of the paper can be described as follows: In Section 2, we give the formulation of the
problem that includes governing equations, boundary conditions, characteristics of the homogenized elastic
media with cracks. In Section 3, we give an explicit description of dipole fields for cracks. Section 4 includes
the outline of the asymptotic algorithm used for evaluation of the stress-intensity factors. We consider the
particular case of thermal load in Section 5. Section 6 presents numerical results for the stress-intensity
factors and the local stability analysis for the crack—defect interaction.

2. Governing equations and homogenization

We consider two types of lattice structures (with hexagonal or triangular cells), where the homogenized
two-dimensional elastic material is isotropic, i.e., the averaged displacement field u satisfies the system of
equilibrium equations

wNV U+ (A +p,)VV-u=0, (2.1)

where A, and p, are the 2D Lamé elastic moduli of the homogenized material. The equivalent represen-
tation of Eq. (2.1) is given by

@T(g)yf@(%>u:0, (2.2)

where # is a 3 x 3 matrix of the 2D elastic moduli of the homogenized material, and the differential
operator & has the form
0
0 K )
gl — | = e P 2.3
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For triangular and hexagonal lattice structures (Fig. 1), the matrices of homogenized elastic moduli are
defined as

(o
”trlang _ — %f %f 0 , (24)
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0 0 i

where £ is the area fraction of the elastic material in the 2D lattice, and E, v are the Young modulus and the
Poisson ratio of the elastic material, respectively (derivation of Eqs. (2.4) and (2.5) is given in Kolaczkowski
et al. (1999)). It follows from Egs. (2.4) and (2.5) that the coefficients 4., u, in Eq. (2.1) are
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(a) (b)

Fig. 1. Lattice structures.

f E
JV* = = — 2.6
h=g 1o (2.6)
for the case of triangular lattice, and
/ 30\ _E 3
L, =2 (1—-2= , - 2.7
/ 4 ! 2f 1 -2 f 1-— v2 27)

for hexagonal lattice structures. We remark that in three dimensions, the homogenized materials above
should be treated as transversely isotropic (their elastic properties in (x;,x,) plane are different from those in
(x1,x3)- and (xy,x3)-planes).

Let a homogenized 2D medium contain two cracks,

M ={x: |x| <a,x, =0}, (2.8)

m, ={x : xjfx +lt Jj=12, || <e}, (2.9)

where ¢ is a small positive non-dimensional parameter, and «, x l are given constants. The crack M has a
finite length 2a, and the crack m, is small, of the length 29 xO = (X9 x{”) = R(cos 0, sin 0) and
1= (11, 12) = (cos f8,sin f§) characterize the location and orientation of the small crack. It is also assumed
that x(*) is located at a finite distance from the crack M (i.e., the quantity R is of order O(1)).

Traction boundary conditions are posed in the homogenized medium for the field u on the crack faces
M= and m*:

@T(n)ﬂg(a%)u—p(x) on M~ Um?, (2.10)

where n represents the unit normal on the crack faces; the principal force and moment vectors associated
with the load p are assumed to be zero.

We seek the solution u with a finite elastic energy. We shall evaluate the stress-intensity factors for the
crack M as functions of position and orientation of the micro-crack m, (the stress-intensity factors also



1662 Y. A. Antipov et al. | International Journal of Solids and Structures 38 (2001) 1659-1668

depend, of course, on the applied load, but we deal with a model situation when the load density is con-
stant), and analyse the local stability of the crack M.

3. Dipole fields for cracks

The asymptotic scheme introduced in the text below involves the so-called dipole fields for cracks. Let .#
be a crack of the finite length 2/ inclined at the angle f§ to the x;-axis. One can introduce three model fields
in R?\ . as follows:

UY(x) = VU (x) + WO (x), j=1,2,3, (3.1)

which satisfy the homogeneous equilibrium equations, homogeneous traction boundary conditions and
grow linearly at infinity. The fields V) are defined by

V<'><x)=(gl>, V(2>(x):(22), V<3)(x):%<§?), (3.2)

and produce constant components of strain. Vector functions W), j = 1,2,3, are assumed to decay at
infinity, and they compensate for the discrepancy left by V' in the traction boundary conditions on the
crack faces; W) are called the dipole fields of the crack .#. At infinity, W) have the following asymptotic
representation:

Wi Z r, (Vm(%))%(x) +O<ﬁ> (33)

where V/)(9/0x) are the vector differential operators defined by Eq. (3.2) (x; should be replaced by 9/dx;),
T(x) is Green’s tensor for 2D elasticity. The matrix ||ij||,3-,k:1 is called the dipole matrix of the crack; it is
symmetric, negative definite. Explicit representation of the matrix P (Movchan and Serkov, 1997) is given

: E4+Q+r E-Q A
P42 T
P:_li?;ﬂ E-Q E+0-3 A |, (3.4)
K A A 20
where
24 _ .
Q:/H_, Z=20+py), X=—ducos2P, A=-22usin2f, O =y,
u

and A, u are the 2D elastic moduli of the material (compare with Eq. (2.1)).
It is straightforward to evaluate the stress components associated with the dipole fields. Assume, for
simplicity, that the crack faces are subjected to constant normal and tangential tractions

Opn = _pgv Ons = —P? (35)

on the crack boundary. Then, it follows from Egs. (3.3) and (3.4) that the stress components are charac-
terized by the following asymptotics:

O—(éla 52) = Z(élv 52) + 0(7’73), r — 0oQ, (36)

2

(&, &) = % [— sin 20(2 cos 2o + 1)p! + (2 cos? 2 — 1)pY],
I

? .
Zié, &) = 55205 20— 1)pf + sin 22(2c0s 22— 1)p8),
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2

37 [sin 20:(2 cos 20 — 1)p? + (=2 cos? 20 + 2 cos 20t + 1)pY], (3.7)

In(é, &) =

where polar coordinates (r,o) and the components X;;(¢;, &) are associated with the local system coor-
dinates (&, &,) (the & -axis is aligned along .#), and

. 2 2
r=\/&+8, sin 20 = €r12527 coszoczié1 rzf )

4. The asymptotic algorithm

The asymptotic approximation of the displacement field u is sought in the form

u(x, e, f) ~v(x,f) +ew(l,f) + ax. /), (4.1)

where { = ¢! (x — x©) defines stretched coordinates introduced in a neighbourhood of the small crack m,; f
is a small area fraction of material in a 2D lattice; ¢ is a non-dimensional small parameter characterizing the
length of m,. Here we assume that ¢ < f.

(1) The vector function v represents the displacement field in R* \ M. It satisfies the system of equilibrium
equations (the micro-crack m, is absent). The representation for the field v is well-known (Sedov, 1972). The

stress components evaluated at (xi ),x2 ) admit the integral representations:

& — 4y L (r1 = O)[(r — &) =]
e / P~ v ¢ / ) gy
o L= = =g ol =8 ]
2 T /—a ¢1(€) [(xl - 5)2 +x%]2 é+ T [a ¢2(€) [(xl - 5)2 +X%]2 67
/ b, (& _6)5) erz / b, (¢ (x1 — x)[ﬁf) j_)xz]t:;xz} dé, 42)

where x; —x§ ), X —x(z ),

)dr, (4.3)

B0 = ——— / e
b a
and py, p, are the components of the tractions applied on M* (see Eq. (2.10)).

(2) The vector field v does not necessarily satisfy the traction boundary conditions (2.10) on m,, and the
error is to be removed by the boundary layer ew(¢, f). Let m = ¢ 'm,. The vector function w satisfies the
homogeneous equilibrium equations (2.1) (with x being replaced by {), and the traction boundary condi-
tions on the faces of the scaled crack m:

o (G) (g ) = o

M — o on(vix@)\ aia(v;x?)
p p + sin ﬁ( 1o (v x©) cos f3 5 . (4.5)
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The solution w is sought in the class of functions which decay at infinity (we note that the right-hand side of
Eq. (4.4) is self-balanced, i.e. its principal force and moment vectors are equal to zero). The functions p?, p)
that are involved in the boundary conditions (3.5) are expressed through quantities (4.2) as follows:

sin 2
Pl=p—= 3 (a}) — 0%,) + cos2f oYy,
P) = py +sin® B ¥, + cos> B a3, — sin 2 o¥,. (4.6)

The asymptotic representation at infinity involves the dipole matrix P defined in Eq. (3.4); the stress
components are given by asymptotic formulae (3.6) and (3.7), where r should be replaced by [{].

(3) The field ew(; £) produces an error of order O(&?) in the traction boundary conditions on the faces
M* of the crack M. Here, at the third step of the algorithm we introduce the function £2q, which satisfies the
equilibrium system (2.1) in R*\ M and the following boundary conditions on M*:

op(q) = —Fi(x1), —a<x<a (j=1,2), (4.7)
where the right-hand side is defined through the first term in Eq. (3.6), namely
E(xl) = %Sin Zﬁ [le(x/l,x'z) — Zzz(x/l,xlz)] + COSZﬁ le(x'l,x;),

Fy(x)) = sin® f 211 (x), %)) + cos? f Ty (x),x}) + sin 2 T, (¥}, x,), (4.8)
where
x| = cos B(x; —x\”) —sin fx", xy = —sinf (x; —x\”) — cos fx".

(4) The stress-intensity factors K/.i characterizing singular stress fields in the vicinity of the end points
(£a,0) of the crack M can be evaluated as follows:

Kf = KF(v) + &K (q) + O(e"), j=T,IL (4.9)
Here,
1 a a+t +1/2
Ki(q) = = Jra 022((1)(a — t) dz,

£1/2
at ’) di (4.10)

Kii(a) :_\/%/_ZGIZ(q)(a—t

As x; — +a £+ 0 and x, = 0, the traction components gy, 65, are characterized by the asymptotic formulae
Ky

o, =———=+ 0(1),
\/2m|x; F al
Ki
0y =——rt+0O(1). (4.11)
2m|x; F 4

Remark. If M is a semi-infinite crack, i.e.
M={x:x=0x <I},
then one can also use the results of Movchan et al. (1991) and Valentini et al. (1999) to evaluate the

perturbation of the crack trajectory due to interaction with the micro-crack m,. Then it is appropriate to
replace M by
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2
M, ={x:x=¢h(x), x <},

where the function / is chosen in such a way that the stress-intensity factor Ky (evaluated to order O(¢*))
at the end of M, is equal to zero. It means that M, “propagates” in an elastic plane with a small defect
(micro-crack) being a Mode-I crack. Both, the dipole field contribution given by Eq. (4.9) and the crack
deflection (see the classical article by Cotterell and Rice (1980)) contribute to the final answer for the stress-
intensity factors. The crack deflection 2k (we refer to Valentini et al. (1999)) is proved to be independent of
the effective elastic moduli /., u,, and it is given by

82

2h(l) = W{4 —2{3 42z 2 4 2c082B(1 + 22)(1 — 22) — 2sin2(2z — 1)(1 + 2)V1 722] }
X

x<10) -1

(4.12)

We note that the crack deflection has the same form in homogenized media corresponding to lattice
structure both with triangular and hexagonal cells (see Egs. (2.4) and (2.5)). Also, the deflection of infinity
(as I — 400) does not depend on the orientation of the micro-crack m,. The crack deflection formula (4.12)
differs from the one derived for the case of the rectangular lattice (see formula (7.12) in Antipov et al.
(2000)). In particular, we remark that the homogenized material with rectangular cells is orthotropic and
has low resistance to shear, the crack trajectory changes, as / — +oo, for different orientations of the micro-
crack m,.

5. Interaction of a finite crack and a micro-crack in a lattice under thermal load

It is natural to assume that the cellular structure of catalytic combustor monoliths is subjected to a
temperature load. Let ar denote the coefficient of thermal expansion, and also assume that ideal thermal
contact (continuity of temperature and the heat flux) is maintained on the crack faces. We consider the
interaction of two cracks M and m, (Section 2); the right-hand side in the boundary condition (2.10) has the
form

p = (2, + 34 )orTh. (5.1)
In particular, for a hexagonal lattice,
3E 1
_ phexag _ __ 3 T 5.2
P="p T (f Zf)ocT n, (52)
and for a triangular lattice
A S5E
_ ptriang _ Tn. .
P="p 78(1—v2)f°” n (53)

For the sake of simplicity we assume that the temperature distribution is uniform. In the asymptotic scheme
described in Section 4, the field v can be defined via the Westergaard potential

A (5.4)

2 g2

where z = x; + ix,. Then, the stress components o;;(v) are given by (Sedov, 1972)
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an(v) = p[ReZi(z) — xIm Zi(z)],
Glz(V) = —prRCZI/(Z),

o (v) = p[ReZ(z) + x, ImZ{(z)]. (5.5)

The boundary layer ew((, /) (it is the second term in Eq. (4.1)) satisfies the homogeneous equilibrium
system (2.1) in R* \ m, m = ¢ 'm,, and the traction boundary conditions (4.4), where p should be replaced
by Eq. (5.2) for a hexagonal lattice or by Eq. (5.3) for a triangular lattice. The stress-intensity factors Kji for
the crack M are determined by Eq. (4.9), where

Ki(v)=0,  Ki(v)=pvma, p=|lpll

with p being defined by the Egs. (5.2) and (5.3). The perturbation terms are given by Egs. (4.7) and (4.10)
and they depend on the applied temperature 7, position and orientation of the micro-crack m,. The answers
for the hexagonal and triangular lattices differ just by a scalar factor.

In the following section, we present evaluation of the stress-intensity factors for different positions and
orientations of the micro-crack and study the local stability of the crack M.

6. Numerical examples: evaluation of the stress-intensity factors, and the local stability analysis

The asymptotic solutions derived in the text above is used to evaluate the stress-intensity factors and to
study the local stability of the large crack M.

In Fig. 2, we show the perturbation terms in the representations of the normalized stress-intensity
factors, and these graphs, periodic in /5, show that the sign of the perturbation terms depends on the
orientation and position of the micro-crack m.. For completeness, we also present the graphs of the per-
turbation terms when f is fixed and 0 is varying (Fig. 3). In Figs. 2 and 3, we used the normalization of the
stress-intensity factors of the form Kji /C, j = 1,11, where the constant C depends on the type of the lattice.
In particular, for the triangular lattice,

K;/C 02

0.1

-01F

-02

0F

K;/C 04
02F
0 E

-02r

Fig. 2. Perturbation of the normalized stress-intensity factors C~'K: versus f. (—) C™'K;", (---) C'K, (= - =) C'Kif, (--) CT'Kyp;
(a) 0=0, (b) 0 = /4, and (c) 0 = /2.
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K;/C 04 K;/C 04

Fig. 3. Perturbation of the normalized stress-intensity factors C~'K;* versus 6. (—) C™'K{", (- - -) C'K[, (= - =) CT'Kyf, (---) C'Kyp;
(@) =0, (b) f=mn/4, and (c) f = /2.

3 aF T T T T T } 3 T ™)
25 25 1
2F 2 4
151 15 1
s 1 1
05p 05 <
0 ! ! ! ! ! ! 0 0 f ! ! ! ! ! 0
0 05 1 15 2 25 3 0 05 1 15 2 25 3

(a) (b)
Fig. 4. Regions of local stability in the plane (0, f) for R/a = 3: (a) K, and (b) K| .

C = SEf Toar/[8(1 —v?)],
and for the hexagonal lattice,
C=3E(f ~f*/2)Tor/[A(1 —)].

To characterize the local stability of the crack M (we say that it is locally stable if the increment of the
stress-intensity factor Kj is negative, and unstable otherwise), we present Fig. 4, which shows the regions of
stability on the plane (0, f8); the calculations have been performed for the case when R/a = 3, where

R =1/ (xio))2 + (xgo))z. Inside the ellipsoidal regions in Fig. 4, we have the points of local stability, and all
remaining points correspond to an unstable crack.
7. Conclusion

We have analysed a perturbation problem of the crack—defect interaction in the homogenized lattice
structure. Explicit asymptotic formulae for the stress-intensity factors and for the crack deflection have
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been derived, and the phenomenon of local stability was studied for a macro-crack in an inhomogeneous
solid. The homogenization procedure is shown to be extremely efficient for the cases of cracks which are
sufficiently large compared to the size of the lattice. The algorithm is used to compare different types of
lattice structures and includes the cases of triangular, hexagonal and square lattices that are commonly used
in design of catalytic monolith combustors.
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